Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 130: 111519, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442573

RESUMO

This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2. The RNAInter database predicted miRNAs that interact with DLEU2 and LXN. Functional and pathway enrichment analyses were performed using GO and KEGG analysis. A mouse model of sepsis was established, and treatment with a placebo or ADSC-EVs was administered, followed by RT-qPCR analysis. ADSC-EVs were isolated and identified. In vitro cell experiments were conducted using the mouse lung epithelial cell line MLE-12, mouse macrophage cell line RAW264.7, and mouse lung epithelial cell line (LEPC). ADSC-EVs were co-cultured with RAW264.7 and MLE-12/LEPC cells to study the regulatory mechanism of the lncRNA DLEU2. Cell viability, proliferation, and apoptosis of lung injury cells were assessed using CCK-8, EdU, and flow cytometry. ELISA was used to measure the levels of inflammatory cytokines in the sepsis mouse model, flow cytometry was performed to determine the number of M1 and M2 macrophages, lung tissue pathology was evaluated by H&E staining, and immunohistochemistry was conducted to examine the expression of proliferation- and apoptosis-related proteins. High-throughput sequencing and bioinformatics analysis revealed enrichment of the lncRNA DLEU2 in ADSC-EVs in sepsis lung tissue. Animal and in vitro cell experiments showed increased expression of the lncRNA DLEU2 in sepsis lung tissue after treatment with ADSC-EVs. Furthermore, ADSC-EVs were found to transfer the lncRNA DLEU2 to macrophages, promoting M2 polarization, reducing inflammation response in lung injury cells, and enhancing their viability, proliferation, and apoptosis inhibition. Further functional experiments indicated that lncRNA DLEU2 promotes M2 polarization of macrophages by regulating miR-106a-5p/LXN, thereby enhancing the viability and proliferation of lung injury cells and inhibiting apoptosis. Overexpression of miR-106a-5p could reverse the biological effects of ADSC-EVs-DLEU2 on MLE-12 and LEPC in vitro cell models. Lastly, in vivo animal experiments confirmed that ADSC-EVs-DLEU2 promotes high expression of LXN by inhibiting the expression of miR-106a-5p, further facilitating M2 macrophage polarization and reducing lung edema, thus alleviating sepsis-induced lung injury. lncRNA DLEU2 in ADSC-EVs may promote M2 polarization of macrophages and enhance the viability and proliferation of lung injury cells while inhibiting inflammation and apoptosis reactions, thus ameliorating sepsis-induced lung injury in a mechanism involving the regulation of the miR-106a-5p/LXN axis.


Assuntos
Lesão Pulmonar , MicroRNAs , Proteínas do Tecido Nervoso , RNA Longo não Codificante , Sepse , Animais , Camundongos , Apoptose/genética , Modelos Animais de Doenças , Lesão Pulmonar/microbiologia , Lesão Pulmonar/terapia , MicroRNAs/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , Sepse/complicações , Sepse/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Mesenquimais , Exossomos , Masculino , Camundongos Endogâmicos C57BL
2.
Int Immunopharmacol ; 130: 111739, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442574

RESUMO

Persistent type (T) 2 airway inflammation plays an important role in the development of severe asthma. However, the molecular mechanisms leading to T2 severe asthma have yet to be fully clarified. Human normal lung epithelial cells (BEAS-2B cells) were transfected with LINC00158/BCL11B plasmid/small interfering RNA (siRNA). Levels of epithelial-mesenchymal transition (EMT)-related markers were measured using real-time qPCR (RT-qPCR) and western blot. A dual luciferase reporter assay was used to validate the targeting relationship between LINC00158 and BCL11B. The effects of LINC00158-lentivirus vector-mediated overexpression and dexamethasone on ovalbumin (OVA)/lipopolysaccharide (LPS)-induced severe asthma were investigated in mice in vivo. Our study showed that overexpression of LINC00158/BCL11B inhibited the levels of EMT-related proteins, apoptosis, and promoted the proliferation of BEAS-2B cells. BCL11B was a direct target of LINC00158. And LINC00158 targeted BCL11B to regulate EMT, apoptosis, and cell proliferation of BEAS-2B cells. Compared with severe asthma mice, LINC00158 overexpression alleviated OVA/LPS-induced airway hyperresponsiveness and airway inflammation, including reductions in T helper 2 cells factors in lung tissue and BALF, serum total- and OVA-specific IgE, inflammatory cell infiltration, and goblet cells hyperplasia. In addition, LINC00158 overexpression alleviated airway remodeling, including reduced plasma TGF-ß1 and collagen fiber deposition, as well as suppression of EMT. Additionally, overexpression of LINC00158 enhanced the therapeutic effect of dexamethasone in severe asthmatic mice models. LINC00158 regulates BEAS-2B cell biological function by targeting BCL11B. LINC00158 ameliorates T2 severe asthma in vivo and provides new insights into the clinical treatment of severe asthma.


Assuntos
Remodelação das Vias Aéreas , Asma , RNA Longo não Codificante , Proteínas Repressoras , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Asma/imunologia , Asma/terapia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Supressoras de Tumor/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , Transfecção
3.
Neurochem Res ; 46(12): 3365-3374, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34514556

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. LncRNA MIAT has been shown to be critical in Alzheimer's disease, but its role and mechanism in PD are still unknown. Differentiated PC12 cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to establish in vitro cell injury model of PD. MTT, Annexin V-PI double staining test and Western blot were used to detect cell viability and apoptosis. Reactive oxygen species (ROS), superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (GSH-PX) kits were used to evaluate oxidative stress in cells. These results showed that LncRNA MIAT was down-regulated in MPP+-induced PC12 cells. Overexpression of LncRNA MIAT remarkably increased cell viability, inhibited cell apoptosis and oxidative stress in MPP+-treated cells. In addition, we proved that miR-132 is a target of LncRNA MIAT. Overexpression of miR-132 could reverse the positive effect of LncRNA MIAT overexpression on MPP+-induced cell oxidative stress injury. SIRT1 is a target of miR-132 and silencing of SIRT1 attunated the positive effect of LncRNA MIAT overexpression on oxidative stress injury in MPP+-induced PC12 cells. In conclusion, this study indicated that LncRNA MIAT suppressed MPP+-induced oxidative stress injury by regulating miR-132/SIRT1 axis in PC12 cells.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , RNA Longo não Codificante/administração & dosagem , Sirtuína 1/metabolismo , Animais , Apoptose , Proliferação de Células , Herbicidas/toxicidade , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Células PC12 , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substâncias Protetoras/farmacologia , RNA Longo não Codificante/genética , Ratos , Sirtuína 1/genética
4.
Neurochem Int ; 150: 105173, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453976

RESUMO

The neuroprotective role of human adipose-derived stems cells (hASCs) has raised great interest in regenerative medicine due to their ability to modulate their surrounding environment. Our group has demonstrated that exosomes derived from hASC (hASCexo) are a cell-free regenerative approach to long term recovery following traumatic brain injury (TBI). Previously, we demonstrated the efficacy of exosome treatment with intravenous delivery at 3 h post TBI in rats. Here, we show efficacy of exosomes through intranasal delivery at 48 h post TBI in mice lengthening the therapeutic window of treatment and therefore increasing possible translation to clinical studies. Our findings demonstrate significant recovery of motor impairment assessed by an elevated body swing test in mice treated with exosomes containing MALAT1 compared to both TBI mice without exosomes and exosomes depleted of MALAT1. Significant cognitive improvement was seen in the reversal trial of 8 arm radial arm water maze in mice treated with exosomes containing MALAT1. Furthermore, cortical damage was significantly reduced in mice treated with exosomes containing MALAT1 as well as decreased MHCII+ staining of microglial cells. Mice without exosomes or treated with exosomes depleted of MALAT1 did not show similar recovery. Results demonstrate both inflammation related genes and NRTK3 (TrkC) are target genes modulated by hASC exosomes and further that MALAT1 in hASC exosomes regulates expression of full length TrkC thereby activating the MAPK pathway and promoting recovery. Exosomes are a promising therapeutic approach following TBI with a therapeutic window of at least 48 h and contain long noncoding RNA's, specifically MALAT1 that play a vital role in the mechanism of action.


Assuntos
Tecido Adiposo/transplante , Lesões Encefálicas Traumáticas/terapia , Disfunção Cognitiva/terapia , Exossomos/transplante , Transtornos Motores/terapia , Transplante de Células-Tronco/métodos , Tecido Adiposo/metabolismo , Administração Intranasal , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Exossomos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Motores/metabolismo , Transtornos Motores/patologia , RNA Longo não Codificante/administração & dosagem , Tempo para o Tratamento
5.
Nat Commun ; 12(1): 3319, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083547

RESUMO

Long noncoding RNAs are widely implicated in diverse disease processes. Nonetheless, their regulatory roles in bone resorption are undefined. Here, we identify lncRNA Nron as a critical suppressor of bone resorption. We demonstrate that osteoclastic Nron knockout mice exhibit an osteopenia phenotype with elevated bone resorption activity. Conversely, osteoclastic Nron transgenic mice exhibit lower bone resorption and higher bone mass. Furthermore, the pharmacological overexpression of Nron inhibits bone resorption, while caused apparent side effects in mice. To minimize the side effects, we further identify a functional motif of Nron. The delivery of Nron functional motif to osteoclasts effectively reverses bone loss without obvious side effects. Mechanistically, the functional motif of Nron interacts with E3 ubiquitin ligase CUL4B to regulate ERα stability. These results indicate that Nron is a key bone resorption suppressor, and the lncRNA functional motif could potentially be utilized to treat diseases with less risk of side effects.


Assuntos
Osteoporose/genética , Osteoporose/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Proteínas Culina/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Fêmur/patologia , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/terapia , RNA Longo não Codificante/administração & dosagem , Ubiquitinação , Regulação para Cima , Microtomografia por Raio-X
6.
Int J Nanomedicine ; 16: 1051-1066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603368

RESUMO

BACKGROUND: This study was aimed to prepare a novel magnetic thermosensitive cationic liposome drug carrier for the codelivery of Oxaliplatin (OXA) and antisense lncRNA of MDC1 (MDC1-AS) to Cervical cancer cells and evaluate the efficiency of this drug carrier and its antitumor effects on Cervical cancer. METHODS: Thermosensitive magnetic cationic liposomes were prepared using thin-film hydration method. The OXA and MDC1-AS vectors were loaded into the codelivery system, and the in vitro OXA thermosensitive release activity, efficiency of MDC1-AS regulating MDC1, in vitro cytotoxicity, and in vivo antitumor activity were determined. RESULTS: The codelivery system had desirable targeted delivery efficacy, OXA thermosensitive release, and MDC1-AS regulating MDC1. Codelivery of OXA and MDC1-AS enhanced the inhibition of cervical cancer cell growth in vitro and in vivo, compared with single drug delivery. CONCLUSION: The novel codelivery of OXA and MDC1-AS magnetic thermosensitive cationic liposome drug carrier can be applied in the combined chemotherapy and gene therapy for cervical cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fenômenos Magnéticos , Terapia de Alvo Molecular , Oxaliplatina/uso terapêutico , RNA Longo não Codificante/administração & dosagem , Neoplasias do Colo do Útero/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Cátions , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Liberação Controlada de Fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Tamanho da Partícula , Eletricidade Estática , Temperatura , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
7.
RNA Biol ; 18(11): 1546-1554, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427561

RESUMO

Pathological changes involving TDP-43 protein ('TDP-43 proteinopathy') are typical for several neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). FTLD-TDP cases are characterized by increased binding of TDP-43 to an abundant lncRNA, NEAT1, in the cortex. However it is unclear whether enhanced TDP-43-NEAT1 interaction represents a protective mechanism. We show that accumulation of human TDP-43 leads to upregulation of the constitutive NEAT1 isoform, NEAT1_1, in cultured cells and in the brains of transgenic mice. Further, we demonstrate that overexpression of NEAT1_1 ameliorates TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy. Thus, NEAT1_1 upregulation may be protective in TDP-43 proteinopathies affecting the brain. Approaches to boost NEAT1_1 expression in the CNS may prove useful in the treatment of these conditions.


Assuntos
Esclerose Lateral Amiotrófica/prevenção & controle , Encéfalo/metabolismo , Proteínas de Ligação a DNA/toxicidade , Demência Frontotemporal/prevenção & controle , Neuroblastoma/prevenção & controle , RNA Longo não Codificante/genética , Proteinopatias TDP-43/prevenção & controle , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Longo não Codificante/administração & dosagem , Saccharomyces cerevisiae , Proteinopatias TDP-43/etiologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
8.
Anticancer Drugs ; 32(2): 178-188, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826414

RESUMO

Ultrasound-mediated nanobubble destruction (UMND), which can utilize the physical energy of ultrasound irradiation to improve the transfer efficiency to target cells is becoming one of the most promising carriers for gene delivery. The purpose of this study was to establish cell-penetrating peptide (CPP)-loaded nanobubbles (CNBs) connected with long intergenic nonprotein coding RNA 00511-small interfering RNA (LINC00511-siRNA) and evaluate its feasibility for improving the chemosensitivity of triple-negative breast cancer in vitro. First, fluorescence imaging confirmed the loading of siLINC00511 on CNBs, and the CNBs-siLINC00511 were characterized by the Zetasizer Nano ZS90 analyzer and transmission electron microscopy. Next, cell counting kit 8 assay was used to detect the inhibitory activity of cisplatin on the proliferation of MDA-MB-231 cells, and the 50% inhibition concentration value before and after transfer was calculated. Finally, the silencing effect of siLINC00511 was evaluated in vitro using an apoptosis assay, transwell assay, real time-PCR and western blotting. UMND combined with CNBs could effectively transfer the siRNA to MDA-MB-231 cells, thus evidently reducing the expression of LINC00511. Furthermore, inhibitory activity of cisplatin on MDA-MB-231 cells was enhanced after downregulation of LINC00511 expression. Downregulation of LINC00511 alters expression of cell cycle-related (CDK 6) and apoptosis-related (Bcl-2 and Bax) proteins in MDA-MB-231 cells. These results suggested that siRNA-CNBs may be an ideal vector for the treatment of tumors, with high efficiency RNA interference under the combined action of UMND. It may provide a new therapeutic method for triple negative breast cancer.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Cisplatino/farmacologia , RNA Longo não Codificante/farmacologia , RNA Interferente Pequeno/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ondas Ultrassônicas , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/administração & dosagem , Cisplatino/administração & dosagem , Quinase 6 Dependente de Ciclina/metabolismo , Regulação para Baixo , Feminino , Vetores Genéticos , Humanos , Concentração Inibidora 50 , Nanopartículas/química , Polímeros/química , RNA Longo não Codificante/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Neoplasias de Mama Triplo Negativas/patologia
9.
Mol Pharm ; 17(11): 4040-4066, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32902291

RESUMO

Nucleic acid therapeutics for RNA interference (RNAi) are gaining attention in the treatment and management of several kinds of the so-called "undruggable" tumors via targeting specific molecular pathways or oncogenes. Synthetic ribonucleic acid (RNAs) oligonucleotides like siRNA, miRNA, shRNA, and lncRNA have shown potential as novel therapeutics. However, the delivery of such oligonucleotides is significantly hampered by their physiochemical (such as hydrophilicity, negative charge, and instability) and biopharmaceutical features (in vivo serum stability, fast renal clearance, interaction with extracellular proteins, and hindrance in cellular internalization) that markedly reduce their biological activity. Recently, several nanocarriers have evolved as suitable non-viral vectors for oligonucleotide delivery, which are known to either complex or conjugate with these oligonucleotides efficiently and also overcome the extracellular and intracellular barriers, thereby allowing access to the tumoral micro-environment for the better and desired outcome in glioblastoma multiforme (GBM). This Review focuses on the up-to-date advancements in the field of RNAi nanotherapeutics utilized for GBM treatment.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Terapia Genética/métodos , Glioblastoma/tratamento farmacológico , MicroRNAs/administração & dosagem , Nanoconjugados/química , Oligonucleotídeos/administração & dosagem , Interferência de RNA , RNA Longo não Codificante/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , MicroRNAs/química , MicroRNAs/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Biomark ; 28(2): 231-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508321

RESUMO

Chemotherapy is one of the primary treatments used against cancer. Cisplatin is a conventional chemotherapy drug used to treat osteosarcoma; however, due to the development of cisplatin resistance, advantageous therapeutic outcomes and prognosis of osteosarcoma remain low. Thus, investigation of the specific targeted therapies to circumvent the anti-chemoresistance of osteosarcoma depends on understanding the molecular mechanisms underlying cisplatin resistance. Tumor cells display an increased utilization of glycolysis rather than oxidative phosphorylation. This phenomenon is called the "Warburg effect," which presents a survival advantage for tumor cells, leading to chemoresistance. To date, the molecular mechanism underlying osteosarcoma cisplatin resistance remains to be fully elucidated. In this study, we reported the significant down-regulation of the long noncoding RNA-Suppressing Androgen Receptor in Renal Cell Carcinoma (lncRNA-SARCC) in the cells of osteosarcoma and in the specimens from osteosarcoma patients. Moreover, we observed a negative correlation between the lncRNA-SARCC and cisplatin resistance in the osteosarcoma tissues. Overexpression of the lncRNA-SARCC sensitizes osteosarcoma cells to cisplatin. From microarray analysis, we screened several miRNAs, which are significantly regulated by the lncRNA-SARCC in osteosarcoma cells, and revealed that lncRNA-SARCC promoted microRNA-43 (miR-143) expression in osteosarcoma. Interestingly, miR-143 showed the same expression pattern with the lncRNA-SARCC in osteosarcoma patient specimens. By establishing a cisplatin-resistant cell line from Sarcoma Osteogenic-2 (Saos-2), we found the cisplatin-resistant cells with down-regulated expressions of the lncRNA-SARCC and miR-143, but with a higher glycolysis rate compared to that in parental cells. We identified the glycolysis key enzyme, Hexokinase 2 (HK2), as a direct target for miR-143 in osteosarcoma. Restoration of the HK2 expression in the lncRNA-SARCC-overexpressing osteosarcoma cells reversed cisplatin resistance, suggesting that lncRNA-SARCC-mediated cisplatin sensitivity may be via glycolysis in the miR-143-inhibited osteosarcoma cells. Finally, results from both in vitro and in vivo xenograft models demonstrated that the lncRNA-SARCC was an effective therapeutic agent for overcoming cisplatin resistance in osteosarcoma. Our findings suggest an essential axis of the lncRNA-SARCC-miR-143-HK2 in regulation of osteosarcoma chemosensitivity, presenting the lncRNA-SARCC as a new therapeutic target against cisplatin-resistant osteosarcoma.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Hexoquinase/genética , MicroRNAs/metabolismo , Osteossarcoma/tratamento farmacológico , RNA Longo não Codificante/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/uso terapêutico , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Injeções Intraperitoneais , Camundongos , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Lett ; 479: 42-53, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200038

RESUMO

Triple-negative breast cancer (TNBC) has special characteristics of significant aggressiveness, and strong potential for metastasis and recurrence; currently there are no targeted drugs for TNBC. Abnormal activation of epithelial-mesenchymal transition (EMT) plays an important role in these malignant behaviors of TNBC. In the crosstalk among the multiple EMT-associated signaling pathways, many miRNAs participate in regulating pathway activity, where they act as "traffic lights" at the intersection of these pathways. In this study, we used miRNA microarray technology to detect differentially expressed miRNAs related to EMT in TNBC, and we identified and verified 9 highly expressed oncogenic miRNAs (OncomiRs). High expression of these OncomiRs in clinical breast cancer tissues affected the prognosis of patients, and inhibition of their expression blocked EMT in TNBC cell lines and suppressed cancer cell proliferation and migration. We constructed an oncolytic adenovirus (AdSVP-lncRNAi9) armed with an artificially-designed interfering lncRNA (lncRNAi9), which exhibited an activity to block EMT in TNBC cells by disrupting the functions of multiple OncomiRs; the efficacy of such a treatment for TNBC was demonstrated in cytology and animal experiments. This research provides a new candidate oncolytic virotherapy for treating highly malignant refractory TNBC.


Assuntos
Dependovirus/genética , Terapia Viral Oncolítica/métodos , RNA Longo não Codificante/administração & dosagem , Neoplasias de Mama Triplo Negativas/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dependovirus/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Biochem ; 121(10): 4261-4270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31909503

RESUMO

This article aimed to reveal the mechanism of long noncoding RNA (lncRNA) urothelial cancer-associated 1 (UCA1) regulated astrocyte activation in temporal lobe epilepsy (TLE) rats via mediating the activation of the JAK/STAT signaling pathway. A model of TLE was established based on rats via kainic acid (KA) injection. All rats were divided into the Sham group (without any treatments), KA group, normal control (NC; injection with empty vector) + KA group, and UCA1 + KA group. The Morris water maze was used to test the learning and memory ability of rats, and the expression of UCA1 in the hippocampus was determined by quantitative real time polymerase chain reaction (qRT-PCR). Surviving neurons were counted by Nissl staining, and expression levels of glial cells glial fibrillary acidic protein (GFAP), p-JAK1, and p-STAT3 and glutamate/aspartate transporter (GLAST) were analyzed by immunofluorescence and Western blot analysis. A rat model of TLE was established by intraperitoneal injection of KA. qRT-PCR and fluorescence analyses showed that UCA1 inhibited astrocyte activation in the hippocampus of epileptic rats. Meanwhile, the Morris water maze analysis indicated that UCA1 improved the learning and memory in epilepsy rats. Moreover, the Nissl staining showed that UCA1 might have a protective effect on neuronal injury induced by KA injection. Furthermore, the immunofluorescence and Western blot analysis revealed that the overexpression of UCA1 inhibited KA-induced abnormal elevation of GLAST, astrocyte activation of the JAK/STAT signaling pathway, as well as hippocampus of epilepsy rats. UCA1 inhibited hippocampal astrocyte activation and JAK/STAT/GLAST expression in TLE rats and improved the adverse reactions caused by epilepsy.


Assuntos
Astrócitos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Janus Quinase 1/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Animais , Comportamento Animal , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Vetores Genéticos/administração & dosagem , Hipocampo/metabolismo , Ácido Caínico/efeitos adversos , Masculino , Memória , Teste do Labirinto Aquático de Morris , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley
13.
Eur Rev Med Pharmacol Sci ; 23(12): 5366-5373, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31298389

RESUMO

OBJECTIVE: To investigate the effects of long non-coding ribonucleic acid (lncRNA) small nucleolar RNA host gene 1 (SNHG1) on the neuronal apoptosis in rats with cerebral infarction through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. MATERIALS AND METHODS: Male Sprague Dawley (SD) rats were divided into M group (model control group), N group (rat model of cerebral infarction) and R group (rat model of cerebral infarction plus lncRNA SNHG1) and then treated accordingly. 2,3,5-triphenyl tetrazolium chloride (TTC) staining was applied to detect the percentage of cerebral infarct volume and apoptosis of brain cells in the three groups of rats; hematoxylin and eosin (HE) staining was utilized to observe the pathological morphology of brain tissues, and Western blotting was performed to measure the protein levels of phosphorylated PI3K (p-PI3K) and p-Akt in the brain tissues. RESULTS: The degree of neurological deficit in the N group was much higher than that in the M group (p<0.05), and it was decreased markedly in the R group compared with that in the N group, with statistically significant differences (p<0.05). In comparison with that in the M group, the cell apoptosis was aggravated notably in the N group and alleviated remarkably in the R group, and the differences were statistically significant (p<0.05). In the N group, the cerebral infarct volume accounted for 33.67% of the whole brain volume, and mild cerebral infarction was detected in the R group, with a percentage of cerebral infarct volume of 20.15%. N group had a more prominent increase in the cerebral infarct volume than the R group (p<0.05). Compared with those in the M group, the pyknotic nuclei and neuron staining of brain tissues were increased significantly, and the neuronal cell injury was aggravated in the N group, while markedly reduced pyknotic nuclei and neuron staining (p<0.05), as well as mild neuronal cell injury (p<0.05), were detected in the R group. The levels of p-PI3K and p-Akt proteins in the brain tissues declined remarkably in the N group compared with those in the R group (p<0.05). CONCLUSIONS: The protective effect of lncRNA SNHG1 on the rats with cerebral infarction is correlated with the activation of the PI3K/Akt signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , RNA Longo não Codificante/administração & dosagem , Animais , Apoptose/genética , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
14.
Medicine (Baltimore) ; 97(36): e12131, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30200102

RESUMO

This study aimed to assess the effect of long noncoding RNAs (lncRNAs) taurine-upregulated gene 1 (TUG1) on cells proliferation and apoptosis as well as its targeting genes in epithelial ovarian cancer (EOC) cells.Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor plasmids were transfected into SK-OV-3 (SKOV3) cells. Rescue experiment was performed by the transfection of lncRNA TUG1 inhibitor and Aurora kinase A (AURKA) mimic plasmids into SKOV3 cells. Cell counting kit-8 (CKK-8), annexin V-FITC (AV)-propidium iodide (PI) (AV-PI), quantitative polymerase chain reaction (qPCR), and western blot assays were performed to detect cells proliferation, apoptosis, RNA expression, and protein expression respectively.Cells proliferation was increased in lncRNA TUG1 mimic group and decreased in lncRNA TUG1 inhibitor group than normal control (NC) groups. Cells apoptosis rate was repressed after treatment with lncRNA TUG1 mimic and promoted after treatment with lncRNA TUG1 inhibitor. AURKA expression but not CLDN3, SERPINE1, or ETS1 expression was adversely regulated by lncRNA TUG1 mimic and inhibitor. After transferring lncRNA TUG1 (-) and AURKA (+) plasmids, cells proliferation was increased, while cells apoptosis rate was decreased in AURKA mimic (+)/lncRNA TUG1 inhibitor (-) group than NC (+)/lncRNA TUG1 (-) group, which suggested lncRNA TUG1 regulated cells proliferation and cells apoptosis through targeting AURKA.LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in EOC cells.


Assuntos
Apoptose/fisiologia , Aurora Quinase A/metabolismo , Proliferação de Células/fisiologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/metabolismo , Aurora Quinase A/administração & dosagem , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Claudina-3/metabolismo , Humanos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/antagonistas & inibidores
15.
EBioMedicine ; 34: 231-242, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30077720

RESUMO

It has previously been reported that human adipose-derived stem cells (hASCs) can promote the regeneration of damaged tissues in rats with liver failure through a 'paracrine effect'. Here we demonstrate a therapeutic effect of hASCs derived Extracellular Vesicles (EVs) on rat models with acute liver failure, as shown by the improvement of the survival rate by >70% compared to controls. Gene sequencing of rat liver revealed an increase in human long-chain non-coding RNA (lncRNA) H19 after hASC-derived EVs transplantation. When the H19 coding sequence was silenced in hASCs and EVs were then collected for treatment of rats with liver failure, we saw a decrease in the survival rate to 40%, compared to treatment with EVs generated from non-silenced hASCs. These data indicate that lncRNA H19 may be a potential therapeutic target for the treatment of liver failure.


Assuntos
Vesículas Extracelulares/transplante , Falência Hepática Aguda/terapia , RNA Longo não Codificante/administração & dosagem , Tecido Adiposo/citologia , Animais , Humanos , Falência Hepática Aguda/metabolismo , Masculino , Ratos Sprague-Dawley , Regeneração , Células-Tronco/metabolismo
16.
Med Sci Monit ; 24: 4592-4601, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969438

RESUMO

BACKGROUND The aim of this study was to explore the potential effects of long noncoding RNA (lncRNA) LINC003121 on thyroid cancer (TC) cell proliferation and invasion and to explore their possible mechanisms with the involvement of the PI3K/Akt signaling pathway. MATERIAL AND METHODS We enrolled 211 thyroid cancer tissues and 70 adjacent normal tissues in this study. TC cell lines K1, SW579, and 8505C and the human thyroid follicular cell line Nthy-ori3-1 were selected and assigned into blank, control vectors, LINC00312 vectors, si-control, and si-LINC00312 groups. Quantitative real-time PCR was used to determine the levels of LINC003121 and Western blotting was used to detect the protein expression of MMP-9, PI3K, t-Akt, and p-Akt. Cell proliferation was assessed by CCK8 assay and EdU incorporation assay, and cell invasion was assessed by Transwell assay. RESULTS The expression of LINC00312 was significantly decreased in TC tissues and cell lines. In an in vitro experiment, si-LINC00312 significantly promoted the invasion and proliferation of TC cells. Conversely, overexpression of LINC00312 decreased cell proliferation and invasion in vitro, and decreased tumorigenicity in TC xenograft models in nude mice. LINC00312-mediated tumor suppression in TC cells may occur via suppression of activation of the PI3K/Akt signaling pathway and expression of MMP-9, and the role of MMP-9 expression induced by overexpressed LINC00312 or si-LINC00312 could be weakened by LY294002 (PI3K inhibitor). CONCLUSIONS LINC00312 can act as a tumor-suppressor in TC by attenuating the PI3K/Akt signaling pathway, and LINC00312 could be a novel diagnosis biomarker and a promising therapeutic target for TC patients.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Longo não Codificante/administração & dosagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Vis Exp ; (142)2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30596388

RESUMO

The single-wall carbon nanotube (SWCNT) is a new type of nanoparticle, which has been used to deliver multiple kinds of drugs into cells, such as proteins, oligonucleotides, and synthetic small-molecule drugs. The SWCNT has customizable dimensions, a large superficial area, and can flexibly bind with drugs through different modifications on its surface; therefore, it is an ideal system to transport drugs into cells. Long noncoding RNAs (lncRNAs) are a cluster of noncoding RNA longer than 200 nt, which cannot be translated to protein but play an important role in biological and pathophysiological processes. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly conserved lncRNA. It was demonstrated that higher MALAT1 levels are related to the poor prognosis of various cancers, including multiple myeloma (MM). We have revealed that MALAT1 regulates DNA repair and cell death in MM; thus, MALAT1 can be considered as a therapeutic target for MM. However, the efficient delivery of the antisense oligo to inhibit/knockdown MALAT1 in vivo is still a problem. In this study, we modify the SWCNT with PEG-2000 and conjugate an anti-MALAT1 oligo to it, test the delivery of this compound in vitro, inject it intravenously into a disseminated MM mouse model, and observe a significant inhibition of MM progression, which indicates that SWCNT is an ideal delivery shuttle for anti-MALAT1 gapmer DNA.


Assuntos
Proliferação de Células/efeitos dos fármacos , Mieloma Múltiplo/patologia , Nanotubos de Carbono/química , RNA Longo não Codificante , Animais , Morte Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Interferência de RNA , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , RNA não Traduzido
18.
Small ; 14(9)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280338

RESUMO

The delivery of tumor-suppressive noncoding RNAs (ncRNAs) including short ncRNAs (i.e., miRNAs) and long ncRNAs (lncRNAs) is put forward to treat tumors. In this work, novel rodlike supramolecular nanoassemblies (CNC @CB[8] @ PGEA) of degradable poly(aspartic acid) (PAsp) derivatives-grafted cellulose nanocrystals (CNCs) and hydroxyl-rich polycations (ethanolamine-functionalized poly(glycidyl methacrylate), PGEA) are proposed via typical cucurbit[8]uril (CB[8])-based host-guest interactions for delivery of different ncRNAs to treat hepatocellular carcinoma (HCC). Spindly CNCs, one kind of natural polysaccharide nanoparticles, possess good biocompatibility and unique physico-chemical properties. PGEA with abundant hydroxyl groups is one promising gene carrier with low cytotoxicity. PAsp can benefit the disassembly and degradability of nanoassemblies within cells. CNC @ CB[8]@PGEA combines the different unique properties of CNC, PGEA, and PAsp. CNC @ CB[8] @ PGEA effectively complexes the expression constructs of miR-101 (plasmid pc3.0-miR-101) and lncRNA MEG3 (plasmid pc3.0-MEG3). CNC @ CB[8] @ PGEA produces much better transfection performances than PGEA-containing assembly units. In addition, the codelivery system of CNC @ CB[8] @ PGEA/(pc3.0-MEG3+pc3.0-miR-101) nanocomplexes demonstrates better efficacy in suppressing HCC than CNC @ CB[8] @ PGEA/pc3.0-MEG3 or CNC @ CB[8] @ PGEA/pc3.0-miR-101 nanocomplexes alone. Such rodlike supramolecular nanoassemblies will provide a promising means to produce efficient delivery vectors of versatile tumor-suppressive nucleic acids.


Assuntos
Peptídeos/química , Poliaminas/química , RNA não Traduzido/administração & dosagem , RNA não Traduzido/química , Ácido Aspártico/química , Carcinoma Hepatocelular/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/química , Humanos , Neoplasias Hepáticas/metabolismo , Nanopartículas/química , Polieletrólitos , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/química
19.
Tumour Biol ; 39(4): 1010428317697578, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28381159

RESUMO

The long and short noncoding RNAs have been involved in the molecular diagnosis, targeted therapy, and predicting prognosis of lung cancer. Utilizing noncoding RNAs as biomarkers and systemic RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision oncology. Targeting of RNA interference payloads such as small interfering RNAs, microRNA mimetic, or anti-microRNA (antagomirs) into specific cell types has achieved initial success. The clinical trials of noncoding RNA-based therapies are on the way with some positive results. Many attempts are done for developing novel noncoding RNA delivery strategies that could overcome systemic or local barriers. Furthermore, it precipitates concerted efforts to define the molecular subtypes of lung cancer, characterize the genomic landscape of lung cancer subtypes, identify novel therapeutic targets, and reveal mechanisms of sensitivity and resistance to targeted therapies. These efforts contribute a visible effect now in lung cancer precision medicine: patients receive molecular testing to determine whether their tumor harbors an actionable come resistance to the first-generation drugs are in clinical trials, and drugs targeting the immune system are showing activity in patients. This extraordinary promise is tempered by the sobering fact that even the newest treatments for metastatic disease are rarely curative and are effective only in a small fraction of all patients. Thus, ongoing and future efforts to find new vulnerabilities of lung cancers unravel the complexity of drug resistance, increase the efficacy of immunotherapies, and perform biomarker-driven clinical trials are necessary to improve the outcome of lung cancer patients.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Medicina de Precisão , RNA Longo não Codificante/administração & dosagem , Pequeno RNA não Traduzido/administração & dosagem , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Interferência de RNA , RNA Longo não Codificante/fisiologia , Pequeno RNA não Traduzido/fisiologia
20.
Mol Neurobiol ; 54(1): 511-523, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26742527

RESUMO

Long noncoding RNAs (lncRNAs) participate in physiological and pathophysiological processes. Type 2 diabetes mellitus (T2DM) accounts for more than 90 % of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. The aim of this study was to investigate the effects of lncRNA NONRATT021972 small interference RNA (siRNA) on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). These experiments showed that the expression levels of NONRATT021972 in DRG were increased in the T2DM rat model (intraperitoneal injection of STZ with 30 mg/kg). The concentration of NONRATT021972 in T2DM patient serum was higher compared to control healthy subjects. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower compared to control rats. MWT and TWL in T2DM rats treated with NONRATT021972 siRNA were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and messenger RNA (mRNA) of T2DM rat DRG were higher compared to the control, while those in T2DM rats treated with NONRATT021972 siRNA were significantly lower compared to T2DM rats. The level of tumor necrosis factor-α (TNF-α) in the serum of T2DM rats treated with NONRATT021972 siRNA was significantly decreased compared with T2DM rats. NONRATT021972 siRNA inhibited the phosphorylation and activation of ERK1/2 in T2DM DRG. Thus, NONRATT021972 siRNA treatment may suppress the upregulated expression and activation of the P2X3 receptor and reduce the hyperalgesia potentiated by the pro-inflammatory cytokine TNF-α in T2DM rats.


Assuntos
Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/biossíntese , Receptores Purinérgicos P2X3/fisiologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Humanos , Masculino , Neuralgia/tratamento farmacológico , RNA Longo não Codificante/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA